Multiples of Integral Points on Elliptic Curves
نویسنده
چکیده
If E is a minimal elliptic curve defined over Z, we obtain a bound C, depending only on the global Tamagawa number of E, such that for any point P ∈ E(Q), nP is integral for at most one value of n > C. As a corollary, we show that if E/Q is a fixed elliptic curve, then for all twists E′ of E of sufficient height, and all torsion-free, rank-one subgroups Γ ⊆ E′(Q), Γ contains at most 6 integral points. Explicit computations for congruent number curves are included.
منابع مشابه
Efficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملIntegral points on elliptic curves and explicit valuations of division polynomials
Assuming Lang’s conjectured lower bound on the heights of non-torsion points on an elliptic curve, we show that there exists an absolute constant C such that for any elliptic curve E/Q and non-torsion point P ∈ E(Q), there is at most one integral multiple [n]P such that n > C. The proof is a modification of a proof of Ingram giving an unconditional but not uniform bound. The new ingredient is a...
متن کاملOn the elliptic curves of the form $ y^2=x^3-3px $
By the Mordell-Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. There is no known algorithm for finding the rank of this group. This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves, where p is a prime.
متن کاملIntegral Points on Elliptic Curves Defined by Simplest Cubic Fields
CONTENTS Introduction 1. Elliptic Curves Defined by Simplest Cubic Fields 2. Linear Forms in Elliptic Logarithms 3. Computation of Integral Points 4. Tables of Results 5. General Results about Integral Points on the Elliptic Curves y2 = x3 + mx2 (m+3)x + 1 References Let f(X) be a cubic polynomial defining a simplest cubic field in the sense of Shanks. We study integral points on elliptic curve...
متن کاملOn the Elliptic Curves of the Form $y^2 = x^3 − pqx$
By the Mordell- Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. This paper studies the rank of the family Epq:y2=x3-pqx of elliptic curves, where p and q are distinct primes. We give infinite families of elliptic curves of the form y2=x3-pqx with rank two, three and four, assuming a conjecture of Schinzel ...
متن کامل